Statistical Model Checking of Simulink models

Edmund M. Clarke
School of Computer Science
Carnegie Mellon University

```cpp
++CDatabase::stats.men_used.v
  _params.max_unrelevance = (int
  if (_params.max_unrelevance <
  _params.max_unrelevance =
  _params.min_num_clause_lits_for
  if (_params.min_num_clause_lit
  _params.min_num_clause_lit
  _params.max_num_clause_lit
  if (_params.min_num_clause
  _params.max_num_clause
  CHECK(
    cout << "Forced to reduce unre
    cout <<\"MaxUnrel: " << _params
    << \" MinLenDel: " << _pa
    << \" MaxLenCL : " << _pa
    
```
The State Explosion Problem

My 27 Year Quest:

- Symmetry Reduction
- Parametric Model Checking
- Partial Order Reduction
- Symbolic Model Checking
- Induction in Model Checking
- SAT based Bounded Model Checking
- Predicate Abstraction
- Counterexample Guided Abstraction Refinement
- Compositional Reasoning

...
Executive Summary

- **State Space Exploration** is infeasible for large systems.
 - Often easier to simulate a system
- Our Goal: Provide **probabilistic guarantees** using fewer simulations
 - How to generate each simulation run?
 - How many simulation runs to generate?
- Applications: Simulink Models, Verilog Designs

Statistical Model Checking of Mixed-Analog Circuits with an Application to a Third Order Delta - Sigma Modulator.
E. M. Clarke, A. Donzé, and A. Legay. **Best Paper Award** at Haifa Verification Conference 2008.
Bayesian Statistical Model Checking

- **Bayesian Approach** to Statistical Model Checking
 - Faster than state-of-the-art Statistical Model Checking.
 - Generally requires fewer simulations.

- Can use **prior knowledge** about the model
 - Represented by the prior probability distribution of the model satisfying the specification.

- Can **revise prior knowledge** in light of experimental data
 - Compute posterior probability of the model satisfying the specification.

Bayesian Statistical Model Checking
Motivation - Scalability

- **State Space Exploration** infeasible for large systems.
 - Symbolic MC with OBDDs scales to 10^{300} states.
 - Scalability depends on the structure of the system.
- **Simulation** is feasible for many more systems.
- Target Applications include:
 - Stateflow Simulink Models
 - Analog Circuits
 - Verilog Models
Motivation – Parallel Model Checking

- Some success with explicit state Model Checking
 - Parallel Murphi
- More difficult to distribute Symbolic MC using BDDs.
- Learned Clauses in SAT solving are not easy to distribute for Bounded Model Checking.
- Simulation can be easily parallelized.
- Next Generation Model Checking should exploit
 - multiple cores
 - commodity clusters
Probabilistic Model Checking

- Given a **stochastic model** \mathcal{M} such as
 - a Markov Chain, or
 - the solution to a stochastic differential equation
- a **Bounded Linear Temporal Logic** property ϕ and a
 probability threshold $\theta \in (0, 1)$.
- Does \mathcal{M} satisfy ϕ with probability at least θ?
 $$\mathcal{M} \models P_{\geq \theta}(\phi)$$
- **Example**: Is every request acknowledged within 10 time units with 99.999999% probability?
- Numerical techniques compute the **precise probability** of \mathcal{M} satisfying ϕ:
 - Does **NOT** scale to large systems.
Decides between two mutually exclusive composite hypotheses:
- Null Hypothesis \(H_0 : \mathcal{M} \models P_{\geq \theta}(\phi) \)
- Alternate Hypothesis \(H_1 : \mathcal{M} \models P_{< \theta}(\phi) \)

Statistical tests can determine the true hypothesis:
- based on sampling the traces of system \(\mathcal{M} \)
- answer may be wrong, but error probability is bounded.

Statistical Hypothesis Testing → Model Checking!
Challenges

- Each simulation trace is **expensive** to generate
 - Computation time: few minutes to several days.

- Given an upper bound on the probability of making **incorrect decisions**:
 - Sample as many traces as needed, but **no more**.

- **Nondeterministic Systems**:
 - Nondeterminism due to incompletely specified inputs
 - Model Checking Markov Decision Processes (PRISM)
 - Statistical Model Checking not yet adapted to MDPs
Existing Work

- [Younes and Simmons 06] use Wald’s SPRT
 - SPRT: Sequential Probability Ratio Test

- The SPRT decides between
 - the simple null hypothesis $H_0' : \mathcal{M} \models P_{=\theta_0}(\phi)$
 vs
 - the simple alternate hypothesis $H_1' : \mathcal{M} \models P_{=\theta_1}(\phi)$

- SPRT is asymptotically optimal (when H_0' or H_1' is true)
 - Minimizes the expected number of samples
 - Among all tests with equal or smaller error probability.
Existing Work

- MC chooses between two **composite** hypotheses

 \[H_1 : \mathcal{M} \models P_{<\theta}(\phi) \quad \text{and} \quad H_0 : \mathcal{M} \models P_{\geq \theta}(\phi) \]

- Existing works use SPRT for hypothesis testing with an indifference region:

 \[\mathcal{M} \models P_{=\theta-\delta}(\phi) \quad \text{and} \quad \mathcal{M} \models P_{=\theta+\delta}(\phi) \]
But MC chooses between two mutually exclusive composite hypotheses

Null Hypothesis \[H_0 : \mathcal{M} \models P_{\geq \theta}(\phi) \]

vs

Alternate Hypothesis \[H_1 : \mathcal{M} \models P_{< \theta}(\phi) \]

We have developed a new MC algorithm
- Statistical Model Checking Algorithm
- Performs Composite Hypothesis Testing
- Based on Bayes Theorem and the Bayes Factor.
Faster Statistical Model Checking II

- Model Checking: $H_0 : \mathcal{M} \models P_{\geq \theta}(\phi)$

- Suppose \mathcal{M} satisfies ϕ with (unknown) probability u.
 - u is given by a random variable U with density g.
 - g represents the prior belief that \mathcal{M} satisfies ϕ.

- Generate independent and identically distributed (iid) sample traces.

- x_i: the i^{th} sample trace σ satisfies ϕ.
 - $x_i = 1$ iff $\sigma_i \models \phi$
 - $x_i = 0$ iff $\sigma_i \not\models \phi$

- Then, x_i will be a Bernoulli trial with density
 \[
 f(x_i|u) = u^{x_i}(1 - u)^{1-x_i}
 \]
Faster Statistical Model Checking III

- $X = (x_1, \ldots, x_n)$ a sample of Bernoulli random variables.
- Bayes Theorem (Posterior Probability):
 \[
P(H_0 \mid X) = \frac{P(X \mid H_0)P(H_0)}{P(X)}
 \]
- Prior Probability of H_0 being true:
 \[
P(H_0) = \int_0^1 g(u)du
 \]
- Ratio of Posterior Probabilities:
 \[
 \frac{P(H_0 \mid X)}{P(H_1 \mid X)} = \frac{P(X \mid H_0)P(H_0)}{P(X \mid H_1)P(H_1)}
 \]
 Bayes Factor
Faster Statistical Model Checking IV

- Bayes Factor: Measure of confidence in H_0 vs H_1
 - provided by the data $X = (x_1, \ldots, x_n)$
 - weighted by the prior g.
- Bayes Factor $> \text{Threshold}$: Accept Null Hypothesis H_0.
- Bayes Factor $< \text{Threshold}$: Reject Null Hypothesis H_0.

Definition: Bayes Factor \mathcal{B} of sample X and hypotheses H_0, H_1

$$
\mathcal{B} = \frac{P(X \mid H_0)}{P(X \mid H_1)} = \frac{\int_0^1 f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u) \, du}{\int_0^1 f(x_1 \mid u) \cdots f(x_n \mid u) \cdot g(u) \, du}
$$
Require: Property $P_{\geq \theta}(\Phi)$, Threshold $T > 1$, Prior density g

$n := 0$ \hspace{1cm} \{number of traces drawn so far\}

$x := 0$ \hspace{1cm} \{number of traces satisfying so far\}

repeat

\begin{align*}
\sigma & := \text{draw a sample trace of the system (iid)} \\
n & := n + 1 \\
\text{if } & \sigma \models \Phi \text{ then} \\
& x := x + 1 \\
\end{align*}

\text{end if}

$B := \text{BayesFactor}(n, x)$

until $(B > T \lor B < 1/T)$

if $(B > T)$ then

return H_0 accepted

else

return H_1 accepted

end if
Bounded Linear Temporal Logic (BLTL): Extension of LTL with time bounds on temporal operators.

Let \(\sigma = (s_0, t_0), (s_1, t_1), \ldots \) be an execution of the model
- along states \(s_0, s_1, \ldots \)
- the system stays in state \(s_i \) for time \(t_i \)

\(\sigma^i \): Execution trace starting at state i.

\(V(\sigma, i, x) \): Value of the variable \(x \) at the state \(s_i \) in.

A natural model for Simulink traces
- Simulink has discrete time semantics
The semantics of BLTL for a trace σ^k:

- $\sigma^k \models x \sim c$ iff $V(\sigma, k, x) \sim c$, where \sim is in \{\leq, \geq, =\}
- $\sigma^k \models \Phi_1 \lor \Phi_2$ iff $\sigma^k \models \Phi_1$ or $\sigma^k \models \Phi_2$
- $\sigma^k \models \neg \Phi$ iff $\sigma^k \models \Phi$ does not hold
- $\sigma^k \models \Phi_1 \mathcal{U}^t \Phi_2$ iff there exists natural i such that
 1) $\sigma^{k+i} \models \Phi_2$
 2) $\sum_{j<i} t_j \leq t$
 3) for each $0 \leq j < i$, $\sigma^{k+j} \models \Phi_1$
Fuel System Controller

The Simulink model:
Fuel System Controller

- We Model Check the formula (Null hypothesis) $\mathcal{M}, \text{FaultRate} \models P_{\geq \theta}(\neg F^{100} G^1(\text{FuelFlowRate} = 0))$
 for $\theta = 0.5, 0.7, 0.8, 0.9, 0.99$.

- “It is not the case that within 100 seconds, FuelFlowRate is zero for 1 second”.

- We use various values of FaultRate for each of the three sensors in the model.

- We use uniform priors over (0,1); both hypotheses equally likely a priori.

- We choose Bayes threshold $T = 1000$, i.e., stop when one hypothesis is 1000 times more likely than the other.
Recall the Null hypothesis:

\[M, \text{FaultRate} \models P_{\geq \theta}(\neg F^{100} G^1(FuelFlowRate = 0)) \]

Number of samples and test decision:
- blue numbers: test accepted Null hypothesis.
- red numbers: test rejected Null hypothesis.

<table>
<thead>
<tr>
<th>Fault rates</th>
<th>Probability threshold θ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.5</td>
</tr>
<tr>
<td>[3 7 8]</td>
<td>63</td>
</tr>
<tr>
<td>[10 8 9]</td>
<td>29</td>
</tr>
<tr>
<td>[20 10 20]</td>
<td>9</td>
</tr>
<tr>
<td>[30 30 30]</td>
<td>9</td>
</tr>
</tbody>
</table>
Δ – Σ Modulators for Dummies

- Widely used family of Analog Digital Converters
- Efficient control of quantization error, i.e., the difference between the analog input and the digital output

- **Saturation** is a critical issue:
 - Internal state variable of the integrator may reach the maximum value.
 - The output does not respond linearly to the input.
 - Saturation compromises the quality of A-D conversion.
Quantization error is the difference between the input and the output.
Integrator stores the summation of δ's in a state variable x.
Quantizer produces output based on the sign of x.
Higher Order $\Delta - \Sigma$ Modulators

- More complex designs use more than one integrator.
- The order of a $\Delta - \Sigma$ modulator is the number of integrators used.
- Integrator’s state variables can become saturated:
 - we study the property $P_{\geq \theta}(F \text{ Satu})$
 - “circuit eventually saturates with probability at least θ”.
- We simulate the system using input signals sampled from a uniform distribution.

 Statistical MC for inputs of bounded amplitude.
Experimental Results

<table>
<thead>
<tr>
<th>Maximum Input Amplitude</th>
<th>Estimated Saturation Probability</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.0938</td>
<td>4967</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6406</td>
<td>17815</td>
</tr>
<tr>
<td>0.25</td>
<td>0.9843</td>
<td>416</td>
</tr>
</tbody>
</table>

- Estimated probability of F_{Satur} being true for a 3^{rd} order $\Delta - \Sigma$ modulator.
- Consistent with results obtained in [Dang et al 04] with reachability techniques.
- Our approach needed **seconds** while [Dang et al 04] needed **hours** of computation time.
- Experiments with 5^{th} and 7^{th} order $\Delta - \Sigma$ modulators showed higher likelihoods of saturation.
Model Checking of Simulink stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Work in Progress

Model Checking of Simulink stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Work in Progress

Model Checking of Simulink stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Model Checking of Simulink stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Work in Progress

Model Checking of Simulink stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?

- **Simulink**
 - Model \mathcal{M}
 - Formula monitor

- **Bayesian Model Checker**
 - Bayes Test
 - Bayes threshold T
 - Probability threshold θ
 - Prior density g
 - BLTL to Simulink compiler
 - BLTL formula Φ
Model Checking of Simulink **stochastic** models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Model Checking of Simulink stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Work in Progress

Model Checking of Simulink stochastic models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?

- **Simulink**
 - Model \mathcal{M}
 - Formula monitor

- **Bayesian Model Checker**
 - Bayes Test
 - BLTL to Simulink compiler
 - $\mathcal{M} \models P_{\geq \theta}(\Phi)$
 - Bayes threshold T
 - Probability threshold θ
 - Prior density g

BLTL formula Φ
Model Checking of Simulink **stochastic** models: $\mathcal{M} \models P_{\geq \theta}(\Phi)$?
Future Work: Cost-Based Bayesian MC

- Model Checking query: $\mathcal{M} \models P_{\geq \theta}(\Phi)$, for $0 < \theta < 1$.
- $C(N)$: Cost of generating the N^{th} sample.
- $R(u, \theta)$: Cost of incorrectly deciding the MC query
 - u is the (unknown) probability that \mathcal{M} satisfies Φ
 - θ is the probability threshold in the specification
- Then, the key problem is to compute $E[R(u, \theta) | X_N]$
 - expected cost of a wrong decision after observing N samples
 $X_N = (x_1, \ldots, x_N)$
- Stopping Criterion:
 - Stop when cost exceeds the reduction in the expected cost of making a wrong decision.
 $$C(N+1) \geq E[R(u, \theta) | X_{N+1}] - E[R(u, \theta) | X_N]$$
Conclusions

- Some evidence that Statistical MC scales to large systems
 - Simulink Models
 - Delta-Sigma Modulator

- We have developed a Bayesian MC algorithm which
 - is faster than state-of-the-art approaches,
 - can use prior knowledge about the system.

- Initial experiments on Simulink are encouraging.

- Plan:
 - More Simulink examples.
 - Extend our implementation to Verilog and circuit models.